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Abstract

A damage constitutive model for concrete subjected to uniaxial alternate tension—compression fatigue loading is
presented. The tension and compression loading and bounding surfaces described in strain-energy release rate are
employed to construct the damage-effective tensor in the formulation of the theoretical model. The position of the
loading surface in the energy release space between the initial and the bounding surfaces denotes the level of damage
state. The varying size of the limit fracture surface for fatigue loading is obtained through establishing the relationship
between cumulative damage and the onset of the energy release in a cycle, which simulates the degenerative process of
the stiffness of concrete under cyclic loading. Fatigue stress—strain relationship is derived for the investigated loading
history. To verify this model an experimental program considering the special mode of loading is developed. Com-
parisons of the theoretical stress—strain curves and fatigue lives with the experimental data indicate good agreement.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The earliest research on fatigue properties of concrete materials is traced back to the end of the 19th
century (Joly, 1898), which is significant for concrete structures (such as bridges, crane beams, hydraulic
foundations, pressure vessels etc.) subjected to long-term cyclic loading. In recent years many investigations
concerning plain concrete under uniaxial cyclic compressive loading have been extensively performed (ACI
Committee 215; Hsu, 1981; Oh, 1991), whereas that under uniaxial alternate tension—compression is little in
the available publications. In fact, many concrete structures suffer from alternate tension—-compression
loading, for example, a partially pre-stressed concrete bridge is under tensile stress state when subjected to
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dead load plus live load at the lower part of normal cross-section, whereas under compressive stress state
when subjected to the dead load. Consequently, it is necessary to research on the fatigue behavior of
concrete in alternate tension—compression loading.

Early attempts at damage constitutive modeling of concrete under cyclic loading have been driven by
limited theoretical argument. Fardis et al. (1983) and Yang et al. (1985) applied damage to concrete under
repeated loading. A quite simple model developed by Fardis et al. (1983) captures well the nonlinear
characteristics of the monotonic and cyclic behavior of concrete. Since then, Suaris et al. (1990) developed a
damage model for monotonic and cyclic behaviors of concrete in which elastic potential was introduced in
terms of principal stresses and damage dependent compliance tensor with the evolution of damage cal-
culated by tracking the movement of the loading surfaces in its approach towards the bounding surface,
defined in terms of the thermodynamic-force conjugates of the damage variables. Papa (1993) presented an
extension of the damage model (developed by Mazars, 1986) valid only for monotonic loading to fatigue
loading through establishing the relationship between the accumulation of damage and stress levels. Khan
et al. (1998) developed an appropriate damage-effect tensor for concrete in constructing the constitutive
equations, in which essential features of concrete, such as degradation of elastic properties, strain softening,
gain in strength under confinement and different behavior in tension and compression, have been captured
effectively. Al-Gadhib et al. (2000) developed an anisotropic damage model capable of predicting the fa-
tigue life of concrete under compression through the adaptation of the constitutive model developed by
Khan et al. (1998). However, few constitutive laws has been proposed to model the damage accumulation in
concrete owing to repeated loading of stress reversal.

A few tests have been conducted to understand the response of concrete under stress reversal, but
conflict conclusions were drawn. Some investigators (Clemmer, 1922; Crepps, 1923; Hatt, 1925; McCall,
1958) observed that stress reversal had no or small effect on fatigue life of concrete, whereas others (Tepfers,
1979; Cornelissen and Reinhardt, 1984; Zhang et al., 1996) realized a determinant effect. Obviously, more
research is deserved to dispose the effect of reversal stress on the fatigue of concrete.

Accordingly, the objective of this paper is to develop a damage constitutive law for concrete subjected to
uniaxial alternate tension—compression fatigue loading based on the concept of bounding surface.

2. Theoretical model
2.1. Bounding surface

A theoretical model based on bounding surface was first developed for metals by Dafalias and Popov
(1977), and this model captured well the nonlinear characteristics of the monotonic and cyclic behaviors of
the general materials. The concept of bounding surface was first applied to concrete by Fardis et al. (1983).
Suaris et al. (1990) developed a damage model for monotonic and cyclic behavior of concrete, and the
damage evolution was obtained by tracking the movement of the loading surfaces in its approach towards
the bounding surface. The bounding, loading, and threshold damage surfaces used in Suaris et al.’s (1990)
theoretical model are illustrated in Fig. 1. In uniaxial tension, only one damage component exists and the
loading path is a straight line along the R, axis. In uniaxial compression, however, two damage components
along axes perpendicular to the axis of compressive stress are active. With considering of symmetry, the
loading path thus have a 45 °C slope in the R,—R; space. These fundamental surfaces used in the model are
described in strain-energy release space proposed by Suaris et al. (1990) as

f=(RR)"” ~Ri/b=0 (1)

F=@RR)"”=R =0 (2)
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Fig. 1. Construction of bounding, loading, and threshold damage surface.

fo=RR)'"> =Ry =0 (3)

where f =the loading surface (LS for short), F =the bounding surface (BS), and f, = the initial damage
surface (IDS) as shown in Fig. 1. R; =the thermodynamic-force conjugate and may be written as

Y|
Ri = pa(aij,wi) (4)

1

where p = the mass density of material, p4 =the complementary energy per unit volume, g;; =the stress
tensor, w; =the damage components along the principal stress directions. R; =the image point at F =0
associated with a given point R; on f = 0 defined by the mapping rule as

Fl' == le (5)

b=R,/(RR)" (6)

with the mapping parameter » ranging from an initial value of co to a limiting value of 1 on growth of
loading surface to eventual coalescence with bounding surface. R; is a parameter called critical energy
release rate and can be calibrated by a uniaxial tension or compression test. Ry is the size of initial damage
surface, and is assumed constant for the case of monotonic loading and varying with the magnitude of
damage for the case of fatigue loading.

2.2. Evaluation of damage

Based on the assumption that the damage increment vector is coaxial with the gradient of f, the
principal damage components as introduced by Dafalias and Popov (1977) and Al-Gadhib et al. (2000) may
be written as

of

with £ = R./b, equation of loading surface becomes

f(Ri,k) = (RR)'"? — k(@,) =0 (8)
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where @, is the norm of the accumulated damage and its increment is defined by
_ 1/2
da, = (dw;doy)" (9)

The scalar magnitude of d, = d/ can be obtained from Eqgs. (7) and (9). The satisfaction of the consistency
condition df = 0 yields

of of . _
ok, QR+ o dk =0 (10)
From Eq. (5) one may write
OR; OR,
R =— — dow, 11
d 5, doy + 50, dw; (11)

Also from Eq. (8), the incremental increase in the loading surface size may be written as

ak = K 4, = % 4 (12)
0w, 0w,
Substitution of Egs. (11) and (12) into Eq. (10) yields d/, and substitution of dA into Eq. (9) yields
WRCIRY .
o dos | of
doy = [% R, (13)
H — azfn aagn GR/m Ry

The damage modulus H is expressed as a function of the distance between the loading and the bounding
surfaces, and given by

Do
H=—- 14
< 5in _ (s> ( )
where D=a constant; and () are Macaulay brackets that set the quantity within to zero if the value is
negative. The normalized distance ¢ between the loading and bounding surfaces is given by

1
o=1—-- 15
. (15)
The normalization of ¢ in the form shown in Eq. (9) results in a constant value of 6 along a fixed loading
surface. The § = d;, corresponds to R, when the state point first crosses the initial damage surface during

any loading cycle.
2.3. Effective compliance matrix

For anisotropic damage, the effective Cauchy stress  can be expressed in a tensor form (Coleman and
Gurtin, 1967) as
c=Mw):o (16)

where ¢ is the usual Cauchy stress; M(w), known as damage-effect tensor, is a linear symmetric operator
represented by a fourth order tensor and should degenerate to a scalar for isotropic damage. In this paper,
the M tensor takes the following form:

1
(1—awy ) (1=Pwn)(1—Pws) 0 0

_ 1
My = 0 (T—s) (1—Poor ) (1—Ps) 0 (17)

1
0 0 (I—aw3)(1—pw ) (1-fw,)
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where w; (i = 1,2,3) are the principal damage components; parameters o and f are introduced as cali-
bration parameters by matching experimentally measured peak strengths for various stress paths.
For undamaged material, the elastic compliance tensor C is given by

Cl=]-v 1 —v (18)

where Ej, v are the initial elastic modulus and Poisson ratio of the material, respectively. From Al-Gadhib
et al. (2000), the elastic compliance tensor C for damaged material can be written as

C=M":C:M (19)
611 612 613
C=|Cy Cyn Cy (20a)
Gy Cxn Cy
611 = 2 L 2 2
Eo(1—awy)”(1—Pawr)(1—Ppws)”
_ 1
Cn = Eo(1=an)2(1—fooy 2 (1—foos )2
Yo 1
f” - ﬁ(l—mﬂ(l—ﬁwl>2<1—/fwz>2 | (20)
Cr2 = O = T son ( pon (fon)(fios
€ = O3 = o sos (o (o (o)
C23 = C32 = Eo(l7&(/)2)(17x(z)3)(1:ﬁzul)z(lfﬁwz)(lfﬁwg)
where C is the effective compliance of damaged materials.
The complementary energy per unit volume pA for damaged states may be written as
s,
pAlo,w)==0 :C: 0 (21)

2

2.4. Uniaxial tension stage of fatigue loading

For the tensile stage of fatigue loading, the Cauchy stress tensor in the principal coordinate system
degenerates to a stress vector given by

[0, 0, O] (22)

where o, is the tension stress.

Substituting Egs. (20a) and (22) into Eq. (21), and differentiating the result with respect to w;, and then
substituting the result into Eq. (4), accounting for w, = w3 = o, (constant in the stage of tension for each
cycle) and w; = w, in uniaxial tension, we get

%o’
fi= Eo(1 = aw)’(1 = poo)* )

Ry=Ry=0 (24)
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Substituting Egs. (23) and (24) into Eq. (1), the loading surface of Eq. (1) becomes
f=R —R/b=0 (25)

Its gradient can be expressed

of

=1, 0, O 26
o=l 0 0 (26)
Differentiating R; with respect to w, and ¢, and substituting the results along with Eq. (26) into Eq. (13),
we get

2amzd6¢ .
Eo(1—awmy)” (1—Pwc

p o >3(a20[li ) (27)

Eo(1—am)* (1—poe)*

d())t =

2.5. Uniaxial compression stage of fatigue loading

For the compression stage of fatigue loading, the stress vector is expressed as
[-o. 0 0] (28)
where o, is the compressive stress.
Substituting Eqgs. (20a) and (28) into Eq. (21), and differentiating the result with respect to w;, and the

substituting the result into Eq. (4), accounting for w, = w; = w. and w; = w, (constant in the stage of
compression for each cycle) in uniaxial compression, we get

R =0 (29)
_ po:

Ey(1 — o)’ (1 — foo)’
Substituting Egs. (29) and (30) into Eq. (1), the loading surface of Eq. (1) becomes

R, = R, (30)

f=R+R)"”~R/b=0 (31)
Its gradient can be expressed as

of

R, {0 7 V%} (32)

Differentiating R; with respect to w. and o, and substituting the results along with Eq. (32) into Eq. (13),
we get
2foc doc
Eo(1—aw)* (1—Poe)’ (
33)

5P
H Eo(1-ae)* (1—foe)

dw, =

2.6. Constitutive relationships

The incremental form of the elastic damage constitutive equations (Al-Gadhib et al., 2000) can be ex-
pressed as

-~ aElm
dSi:ijde+6m—dwk (i,j,k,m: 1,2,3) (34)
6wk
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For uniaxial alternating tension—compression, differentiating C;; in Eq. (20a) with respect to w; and
substituting the results along with Egs. (20b) and (27) into Eq. (34), one obtains

dgl ==

(35)

1 40262 JEX(1 — aw)*(1 — Booe)®
do;
Eo(1 — a )’ (1 = Boe)*  H — 30262 /Eo(1 — ae)*(1 — pooe)’*

As the incremental constitutive equation for tensile stage, where de, = the increment of tensile strain; ¢, and
do; are tensile stress and its increment, respectively.

In the same way, differentiating C;; in Eq. (20a) with respect to w; and substituting the results along with
Egs. (20b) and (33) into Eq. (34), one obtains

de. = — (36)

1 N 8/3203/5‘5(1 — ocwt)4(1 — ﬁa)c)lo ds
Eo(1 —am )’ (1 — por)'  H — 502 /Ep(1 — a)*(1 — far)® |

As the incremental constitutive equation for compressive stage, where de. = the increment of compressive
strain; o, and do, are the compressive stress and its increment, respectively.

3. Experimental program
3.1. Materials and specimens
Commercially available Portland cement was used. Crushed natural stones were used as coarse aggregate

with maximum particle size of 20 mm. River sand was used as the fine aggregates. The concrete mixture
proportions by weight are cement:water:coarse aggregate:fine aggregate = 1.0:0.5:5.5:3.5.
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Fig. 2. Test specimen.
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A detailed diagram for dog-bone specimens used in this paper with 350 mm long, 100 mm wide, and 100
mm thick is given in Fig. 2. The specimens are cast in wood molds. The molds are removed after 24 h from
casting and the specimens are placed in a curing room at a relative humidity of 95% and at a temperature
of 20 °C for 4 weeks. The 28-day compressive strength of concrete obtained by testing standard cube
specimens (150 mm x 150 mm x 150 mm) is 31.48 MPa. Then, the specimens are dried in air for 8 weeks
before testing.

3.2. Testing system and loading conditions

The experimental set-up is shown in Fig. 3. Un-spaced spherical hinges are used between actuator and
loading plate to ensure the continuity and stability of the stress loaded on the specimen. A steel ring with
holes was mounted on each end of the specimen by the bottleneck for setting sensors. Two linear variable

Fig. 3. Experimental set-up.
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differential transducers (LVDT) on both sides of the specimen are used for measuring the deformation.
Preloading should be done before test. For tensile fatigue test, the clamping of specimen is conducted with
deformation controlled by the displacement of the actuator after placing the specimen between the loading
plates, and the specimen is preloaded repeatedly with the maximum stress reaching to 20% of the com-
pressive strength of concrete during per preloading. When the number of preloading is reached, the
tightness between specimen and both up and lower loading plates is adjusted by screwing the nuts on the
screws to keep the strain difference of the two LVDTs less than 10 microstrains to ensure axial loading.
Then each screw is added an additional nut to make the specimen and plates fixed. The preload of the
specimen is reduced to zero by adjusting the position of actuator after finishing the above procedure, and
the axial tensile fatigue loading can be conducted subsequently. For tension—compression fatigue test, two
blocks of elastic rubber shims with 5 mm thick are placed between both ends of specimen and plates
separately, and other procedures are the same with tensile loading.

A total of 76 specimens are tested in this paper. Both tensile repeated loading and reversible loading are
studied. For fatigue tests, one-stage constant amplitude fatigue loading is applied. The tests are carried out
in load control using a sinusoidal waveform with the frequency of 5-15 Hz. The adopted combinations of
maximum stress levels (denoted as S,.x), minimum stress levels (Sy,;,, which is the ratio of minimum stress
to tensile strength for tensile loading, or the ratio of compressive stress to compressive strength for stress
reversal), loading frequencies (f) are listed in Table 1. All tests are performed in an MTS-810 closed-loop
testing machine, with capacity of 100 kN.

3.3. Results for static tests

To estimate the static strength of the specimens for the constant amplitude tests, six direct tensile tests
and three compressive tests are performed for the dog-bone specimens in each batch of the concrete. The
average tensile strength (f;) is 1.74 MPa and the ultimate strain is 0.01%. The average compressive strength
is 20.47 MPa and the ultimate strain is 0.23%. The Young’s modulus is 23.4 GPa, which is determined as
the secant modulus at 0.4f; and Poisson’s ratio is 0.17.

Table 1
Loading conditions
Loading forms Shmin Shmax f (Hz) Number of specimens
Tension 0.15 0.85 5 5
0.75 15 5
0.7 15 5
0.65 15 2
Tension—compression 0.1 0.85 5 3
0.75 5 3
0.65 5 4
0.6 5 3
0.55 5 2
0.2 0.85 5 3
0.75 5 4
0.65 5 4
0.55 5 4
0.5 5 2
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3.4. Results for S—-N curves

Results of the tension and tension—compression fatigue tests are shown in Table 2. These scattered re-
sults are statistically analyzed to obtain S—N curves. In the curves the logarithm of the number of cycles to
failure (V) is plotted against the maximum stress level (S). The S—N curves are shown in Fig. 4 for repeat
tensile tests and Fig. 5 for stress reversals. The lines drawn in the diagrams are the results of a multiple
linear regression analysis. These results indicate that the S—N curves of concrete subjected to repeat loads
exhibit no fatigue limit less than 2 million cycles. Also, it is decided to consider the maximum number of
cycles of the run-outs as the number of cycles to failure.

The relationship between stress levels and average fatigue life can then be written as

IgN = 16.67 — 16.76 7 | 5,17 Zmin (“‘“i“ = 0-0.3> for direct tension (37a)
S Ji S
Omax O min O min . .
IlgN =12.02 — 10.64 T 4.39 T ( T = 0.1—0.2) for tension—compression (37b)
t c c

where g, 1s the maximum stress; o,,;, is the minimum stress; N is the number of cycles to failure; f; and f;
are the tensile and compressive strengths of concrete, respectively.

The correlation coefficients (%) for Eqgs. (37a) and (37b) are 0.964 and 0.943, respectively. The fatigue
strength ratio for 2 million cycles corresponding to the minimum stress levels (Sp,) of 0.15 is predicted as
0.67 by Eq. (37a), and those corresponding to the minimum stress levels of 0.1 and 0.2 are predicted as 0.5
and 0.46 by Eq. (37b), respectively.

For tensile fatigue tests, Tepfers (1979) obtained a fatigue strength of 63.3% for 2 million cycles under
P =0.2 (P is a ratio of minimum stress to maximum stress) in splitting tension to concrete cubes. Cor-
nelissen and Reinhardt (1984) obtained a fatigue strength of about 62% for 2 million cycles under P = 0.2 in
uniaxial tension. It should be noted that the minimum stress level of 0.2 is, in a certain degree, the stress
ratio of 0.18-0.23 for the maximum stress level from 0.85 to 0.65 in this paper, so the test results got in the

Table 2
Experimental results for concrete under fatigue loading
Loading forms Shmin Shmax Number of cycles to failure
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Tension 0.15 0.85 199 357 633 854 2512
0.75 1778 16,817 22,140 25,119 32,613
0.7 136,524 210,146 498,701 565,668 1,258,926
0.6 2.5x 106 2.5x 10%
Tension—compression 0.1 0.85 122 209 513
0.75 3236 8750 13,804
0.65 9120 36,308 42,658 107,152
0.6 26,303 94,624 171,791
0.55 2.5x10%% 2.5%x 106
0.2 0.85 79 178 196
0.75 398 1702 3981 5623
0.65 2673 8810 18,323 57,544
0.55 27,416 45,186 95,499 88,5116
0.5 2.5x 106 2.5%x 106

4 Not failed.
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Fig. 5. Tension—compression S—N curves for different Sy,i: (a) R = 0.1 and (b) R = 0.2.

paper is comparable with those by Tepfers (1979) and Cornelissen and Reinhardt (1984). Fig. 6 shows the
comparison of Eq. (37a) with the test data in the available publications as follows:

(a) Tepfers (1979) tested 150x 150 x 150 mm prisms using concrete compression strengths of 40.8 and 56.7
MPa. Three stress ratios (P = 0.2, 0.3, and 0.4) were applied with the frequency of 5 or 10 Hz. The test
results under the stress ratio of P = 0.2 are used in the paper.

(b) Cornelissen and Reinhardt (1984) tested 120x 300 mm diameter cylinders using a cube compression
strength of 47.34 MPa. The minimum stress level was under 0.1 with one frequency (6 Hz).

It is certified from these fatigue experimental results that the fatigue strength of concrete under direct
tensile loading obtained in this study is correct.
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Fig. 7. Comparison of Eq. (37b) with Cornelissen’s tests for direct tension—compression reversal loading: (a) Sy, = 0.1; (b) Spin = 0.2.

For alternate tension—compression fatigue tests, Cornelissen and Reinhardt (1984) obtained a fatigue
strength of about 35.3% and 32.1% for 2 million cycles for Sy, = 0.1 and 0.2, respectively. Comparison is
made with the direct tension—compression tests in the paper. Two minimum stress levels (S, = 0.1, 0.2) are
presented in Fig. 7. It is found that the fatigue strength of concrete under tension—compression loading
obtained in this study is somewhat higher than that obtained by Cornelissen and Reinhardt (1984), but they
have the same trend.

3.5. Results for cyclic strains

The typical stress—strain curves under alternating tensile-compressive stress are presented in Figs. 10(a)
and 11(a). It can be seen that the stress—strain relationships in uniaxial tension are almost linear during
most of the fatigue life in the loading stages and hysteresis phenomenon is apparent especially in
approaching failure. The stress—strain curve appears the rough—fine-rough feature with the increase of
strain. Similar features have been reported in literatures Saito and Imai (1983), and Cornelissen and
Reinhardt (1984).
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The stress—strain curves in the tensile stages of tension—compression loading are the same as those in
tension, whereas the hysteresis phenomenon is not obvious as the smaller compressive stress is used.

4. Verification
4.1. Calibration of model parameters

The material parameters of the proposed model are obtained from the monotonic and tension—com-
pression fatigue loading tests. The Young’s modulus was evaluated £ = 23.4 GPa, Poisson’s ratio v = 0.17.
The parameter « is used for modifying the damage induced by direct tension, and f controlling the damage
growth rate and influencing the pre-peak behavior. In the proposed model, («, ) are assigned (0.5,0.05)
and (0.25,0.1) at the stages of tension and compression test, respectively, the parameter D = 2.65 as Suaris
et al. (1990) controlling the softening phase of concrete response in stress—strain space, and the parameters
R =5.5x 107> MPa and R, = 2.1 x 10~* MPa denoting the magnitudes of energy release rates when the
loading surface f = 0 reaches the corresponding bounding surface F = 0.

For monotonic loading, the threshold of damage is identified by the initial damage surface fy = 0 with
size Ry. However, for cyclic loading R, is hypothesized changing with each successive cycle and denoted as
Ry = Ry(@), where @ = (w,-w,»)z is the magnitude of the damage vector w;. The function of Ry(®) is found to
be an elliptical form for cyclic loading (Al-Gadhib et al., 2000). The form of the surface in Ry—® space may
be expressed as

(Ry — R@)z n (0 — @b)z
(Ry — Ry (@ — @)

=1 (38)

where R, and @; correspond to the initial size of the limit fracture surface and the associated damage,
respectively, and R} and @, the bound surface and associated damage, respectively. The limit fracture
surface may reach its bounding surface while the loading surface f = 0 may still be remote from its own
conjugate bounding surface F = 0. Consequently, further damage is deemed to occur at a fixed size of limit
fracture surface (R)) until damage reaches its limiting value w,, and the loading surface / = 0 reaches the
bounding surface F' = 0, defining incipient failure.
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Fig. 8. Predicted damage accumulation under cyclic loading.
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Fig. 11. Experimental and analytical cyclic stress—strain curves for Sp.x = 0.85, Sy = 0.2: (a) experiment; (b) analysis.
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Fig. 12. Comparison of model with experiment for S—N.

For tensile loading, the initial damage w; is set to 0.05 and @; will be equal to 0.05, too. The bounding
damage @y, 1s set to 0.5. For compressive loading, the initial damage w; is set to 0.05 and @; will be equal to
0.07. The bounding damage @;, is set to 0.71. Substitution of @; and @y into Eq. (38) yields the evolution
relationship between Ry and @.

4.2. Comparison with experimental data

The theoretical model in this paper is coded into a computer program to simulate the response under
alternate tension—compression fatigue loading. The analytical predictions for the damage accumulation
under cyclic loading are shown in Fig. 8 for three stress ratios (Sp.x = 0.9, 0.8, 0.7), whereas the variations
of damage modulus # = & with damage evolution are shown in Fig. 9. With the experimentally determined
parameters, the theoretical stress—strain relationships of concrete under different stress levels are obtained.
Theoretical and experimental cyclic stress—strain curves are compared in Figs. 10 and 11 respectively. Fig.
10 corresponds to minimum stress level of S;,;, = 0.1. With the same stress level and cycles, strains from the
theoretical calculation show relatively smaller than that from test in the stage of tension, however, they are
close in the stage of compression. The reason may be that the plastic strain is generated during the fatigue
loading and only elastic damage is considered in the constitutive law, so the model may not predict the
behavior very well. Fig. 11 corresponds to the minimum stress level of Sy, = 0.2. Fig. 12 shows the
computed fatigue lives for different stress levels, compared to the experimentally determined fatigue lives.
Although most of the fatigue lives obtained by the theory match the experimental results very well, the lives
obtained from the analytical method are somewhat smaller than the values of experimental linear regres-
sion.

5. Conclusions

A constitutive relationship for predicting the behavior of concrete subjected to uniaxial alternate ten-
sion—compression fatigue loading is developed based on the continuum damage mechanics. The tension and
compression bounding surfaces are employed in the formulation of the theoretical model, and the damage
evolution law has been derived. Experimental evidence indicates good agreement between theoretical model
and the experimental stress strain relationships. It is therefore possible to apply the constitutive relationship
developed in this paper for the prediction of the stress strain response subjected to stress reversal.
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