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Abstract

A damage constitutive model for concrete subjected to uniaxial alternate tension–compression fatigue loading is

presented. The tension and compression loading and bounding surfaces described in strain-energy release rate are

employed to construct the damage-effective tensor in the formulation of the theoretical model. The position of the

loading surface in the energy release space between the initial and the bounding surfaces denotes the level of damage

state. The varying size of the limit fracture surface for fatigue loading is obtained through establishing the relationship

between cumulative damage and the onset of the energy release in a cycle, which simulates the degenerative process of

the stiffness of concrete under cyclic loading. Fatigue stress–strain relationship is derived for the investigated loading

history. To verify this model an experimental program considering the special mode of loading is developed. Com-

parisons of the theoretical stress–strain curves and fatigue lives with the experimental data indicate good agreement.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The earliest research on fatigue properties of concrete materials is traced back to the end of the 19th

century (Joly, 1898), which is significant for concrete structures (such as bridges, crane beams, hydraulic

foundations, pressure vessels etc.) subjected to long-term cyclic loading. In recent years many investigations

concerning plain concrete under uniaxial cyclic compressive loading have been extensively performed (ACI

Committee 215; Hsu, 1981; Oh, 1991), whereas that under uniaxial alternate tension–compression is little in

the available publications. In fact, many concrete structures suffer from alternate tension–compression

loading, for example, a partially pre-stressed concrete bridge is under tensile stress state when subjected to
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dead load plus live load at the lower part of normal cross-section, whereas under compressive stress state

when subjected to the dead load. Consequently, it is necessary to research on the fatigue behavior of

concrete in alternate tension–compression loading.

Early attempts at damage constitutive modeling of concrete under cyclic loading have been driven by
limited theoretical argument. Fardis et al. (1983) and Yang et al. (1985) applied damage to concrete under

repeated loading. A quite simple model developed by Fardis et al. (1983) captures well the nonlinear

characteristics of the monotonic and cyclic behavior of concrete. Since then, Suaris et al. (1990) developed a

damage model for monotonic and cyclic behaviors of concrete in which elastic potential was introduced in

terms of principal stresses and damage dependent compliance tensor with the evolution of damage cal-

culated by tracking the movement of the loading surfaces in its approach towards the bounding surface,

defined in terms of the thermodynamic-force conjugates of the damage variables. Papa (1993) presented an

extension of the damage model (developed by Mazars, 1986) valid only for monotonic loading to fatigue
loading through establishing the relationship between the accumulation of damage and stress levels. Khan

et al. (1998) developed an appropriate damage-effect tensor for concrete in constructing the constitutive

equations, in which essential features of concrete, such as degradation of elastic properties, strain softening,

gain in strength under confinement and different behavior in tension and compression, have been captured

effectively. Al-Gadhib et al. (2000) developed an anisotropic damage model capable of predicting the fa-

tigue life of concrete under compression through the adaptation of the constitutive model developed by

Khan et al. (1998). However, few constitutive laws has been proposed to model the damage accumulation in

concrete owing to repeated loading of stress reversal.
A few tests have been conducted to understand the response of concrete under stress reversal, but

conflict conclusions were drawn. Some investigators (Clemmer, 1922; Crepps, 1923; Hatt, 1925; McCall,

1958) observed that stress reversal had no or small effect on fatigue life of concrete, whereas others (Tepfers,

1979; Cornelissen and Reinhardt, 1984; Zhang et al., 1996) realized a determinant effect. Obviously, more

research is deserved to dispose the effect of reversal stress on the fatigue of concrete.

Accordingly, the objective of this paper is to develop a damage constitutive law for concrete subjected to

uniaxial alternate tension–compression fatigue loading based on the concept of bounding surface.
2. Theoretical model

2.1. Bounding surface

A theoretical model based on bounding surface was first developed for metals by Dafalias and Popov

(1977), and this model captured well the nonlinear characteristics of the monotonic and cyclic behaviors of

the general materials. The concept of bounding surface was first applied to concrete by Fardis et al. (1983).
Suaris et al. (1990) developed a damage model for monotonic and cyclic behavior of concrete, and the

damage evolution was obtained by tracking the movement of the loading surfaces in its approach towards

the bounding surface. The bounding, loading, and threshold damage surfaces used in Suaris et al.�s (1990)
theoretical model are illustrated in Fig. 1. In uniaxial tension, only one damage component exists and the

loading path is a straight line along the R1 axis. In uniaxial compression, however, two damage components

along axes perpendicular to the axis of compressive stress are active. With considering of symmetry, the

loading path thus have a 45 �C slope in the R2–R3 space. These fundamental surfaces used in the model are

described in strain-energy release space proposed by Suaris et al. (1990) as
f ¼ ðRiRiÞ1=2 � Rl=b ¼ 0 ð1Þ

F ¼ ðRiRiÞ1=2 � Rl ¼ 0 ð2Þ
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Fig. 1. Construction of bounding, loading, and threshold damage surface.
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f0 ¼ ðRiRiÞ1=2 � R0 ¼ 0 ð3Þ

where f ¼ the loading surface (LS for short), F ¼ the bounding surface (BS), and f0 ¼ the initial damage

surface (IDS) as shown in Fig. 1. Ri ¼ the thermodynamic-force conjugate and may be written as
Ri ¼ q
oK
oxi

ðrij;xiÞ ð4Þ
where q¼ the mass density of material, qK¼ the complementary energy per unit volume, rij ¼ the stress

tensor, xi ¼ the damage components along the principal stress directions. Ri ¼ the image point at F ¼ 0

associated with a given point Ri on f ¼ 0 defined by the mapping rule as
Ri ¼ bRi ð5Þ

b ¼ Rl=ðRiRiÞ1=2 ð6Þ
with the mapping parameter b ranging from an initial value of 1 to a limiting value of 1 on growth of

loading surface to eventual coalescence with bounding surface. Rl is a parameter called critical energy

release rate and can be calibrated by a uniaxial tension or compression test. R0 is the size of initial damage

surface, and is assumed constant for the case of monotonic loading and varying with the magnitude of
damage for the case of fatigue loading.

2.2. Evaluation of damage

Based on the assumption that the damage increment vector is coaxial with the gradient of f , the

principal damage components as introduced by Dafalias and Popov (1977) and Al-Gadhib et al. (2000) may

be written as
dxi ¼ dk
of
oRi

ð7Þ
with k ¼ Rc=b, equation of loading surface becomes
f ðRi; kÞ ¼ ðRiRiÞ1=2 � kð�xpÞ ¼ 0 ð8Þ
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where �xp is the norm of the accumulated damage and its increment is defined by
d�xp ¼ ðdxi dxiÞ1=2 ð9Þ

The scalar magnitude of d�xp ¼ dk can be obtained from Eqs. (7) and (9). The satisfaction of the consistency

condition df ¼ 0 yields
of
oRi

dRi þ
of
ok

dk ¼ 0 ð10Þ
From Eq. (5) one may write
dRi ¼
oRi

ork
drk þ

oRi

oxj
dxj ð11Þ
Also from Eq. (8), the incremental increase in the loading surface size may be written as
dk ¼ ok
o�xp

d�xp ¼
ok
o�xp

dk ð12Þ
Substitution of Eqs. (11) and (12) into Eq. (10) yields dk, and substitution of dk into Eq. (9) yields
dxk ¼
of
oRj

oRj

ors
drs

H � of
oRn

oRn
oxm

of
oRm

" #
of
oRk

ð13Þ
The damage modulus H is expressed as a function of the distance between the loading and the bounding

surfaces, and given by
H ¼ Dd
hdin � di ð14Þ
where D¼ a constant; and Æ æ are Macaulay brackets that set the quantity within to zero if the value is

negative. The normalized distance d between the loading and bounding surfaces is given by
d ¼ 1� 1

b
ð15Þ
The normalization of d in the form shown in Eq. (9) results in a constant value of d along a fixed loading

surface. The d ¼ din corresponds to R0 when the state point first crosses the initial damage surface during

any loading cycle.

2.3. Effective compliance matrix

For anisotropic damage, the effective Cauchy stress �r can be expressed in a tensor form (Coleman and

Gurtin, 1967) as
�r ¼ MðxÞ : r ð16Þ

where r is the usual Cauchy stress; MðxÞ, known as damage-effect tensor, is a linear symmetric operator
represented by a fourth order tensor and should degenerate to a scalar for isotropic damage. In this paper,

the M tensor takes the following form:
Mij ¼

1
ð1�ax1Þð1�bx2Þð1�bx3Þ

0 0

0 1
ð1�ax2Þð1�bx1Þð1�bx3Þ

0

0 0 1
ð1�ax3Þð1�bx1Þð1�bx2Þ

2
664

3
775 ð17Þ
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where xi (i ¼ 1; 2; 3) are the principal damage components; parameters a and b are introduced as cali-

bration parameters by matching experimentally measured peak strengths for various stress paths.

For undamaged material, the elastic compliance tensor C is given by
½C� ¼
1 �m �m
�m 1 �m
�m �m 1

2
4

3
5 ð18Þ
where E0, m are the initial elastic modulus and Poisson ratio of the material, respectively. From Al-Gadhib

et al. (2000), the elastic compliance tensor C for damaged material can be written as
C ¼ MT : C : M ð19Þ

C ¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75 ð20aÞ

C11 ¼ 1

E0ð1�ax1Þ2ð1�bx2Þ2ð1�bx3Þ2

C22 ¼ 1

E0ð1�ax2Þ2ð1�bx1Þ2ð1�bx3Þ2

C33 ¼ 1

E0ð1�ax3Þ2ð1�bx1Þ2ð1�bx2Þ2

C12 ¼ C21 ¼ �m
E0ð1�ax1Þð1�ax2Þð1�bx1Þð1�bx2Þð1�bx3Þ2

C13 ¼ C31 ¼ �m
E0ð1�ax1Þð1�ax3Þð1�bx1Þð1�bx2Þ2ð1�bx3Þ

C23 ¼ C32 ¼ �m
E0ð1�ax2Þð1�ax3Þð1�bx1Þ2ð1�bx2Þð1�bx3Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð20bÞ
where C is the effective compliance of damaged materials.

The complementary energy per unit volume qK for damaged states may be written as
qKðr;xÞ ¼ 1

2
rT : C : r ð21Þ
2.4. Uniaxial tension stage of fatigue loading

For the tensile stage of fatigue loading, the Cauchy stress tensor in the principal coordinate system

degenerates to a stress vector given by
½�rt; 0; 0� ð22Þ
where rt is the tension stress.

Substituting Eqs. (20a) and (22) into Eq. (21), and differentiating the result with respect to xi, and then

substituting the result into Eq. (4), accounting for x2 ¼ x3 ¼ xc (constant in the stage of tension for each

cycle) and x1 ¼ xt in uniaxial tension, we get
R1 ¼
ar2

t

E0ð1� axtÞ3ð1� bxcÞ4
ð23Þ

R2 ¼ R3 ¼ 0 ð24Þ
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Substituting Eqs. (23) and (24) into Eq. (1), the loading surface of Eq. (1) becomes
f ¼ R1 � Rt=b ¼ 0 ð25Þ

Its gradient can be expressed
of
oRi

¼ ½1; 0; 0� ð26Þ
Differentiating Ri with respect to xt and rt and substituting the results along with Eq. (26) into Eq. (13),

we get
dxt ¼
2art drt

E0ð1�axtÞ3ð1�bxcÞ4

H � 3a2r2t
E0ð1�axtÞ4ð1�bxcÞ4

ð27Þ
2.5. Uniaxial compression stage of fatigue loading

For the compression stage of fatigue loading, the stress vector is expressed as
½�rc 0 0� ð28Þ

where rc is the compressive stress.

Substituting Eqs. (20a) and (28) into Eq. (21), and differentiating the result with respect to xi, and the
substituting the result into Eq. (4), accounting for x2 ¼ x3 ¼ xc and x1 ¼ xt (constant in the stage of

compression for each cycle) in uniaxial compression, we get
R1 ¼ 0 ð29Þ

R2 ¼ R3 ¼
br2

c

E0ð1� axtÞ2ð1� bxcÞ5
ð30Þ
Substituting Eqs. (29) and (30) into Eq. (1), the loading surface of Eq. (1) becomes
f ¼ ðR2
2 þ R2

3Þ
1=2 � Rc=b ¼ 0 ð31Þ
Its gradient can be expressed as
of
oRi

¼ 0 1ffiffi
2

p 1ffiffi
2

p
h i

ð32Þ
Differentiating Ri with respect to xc and rc and substituting the results along with Eq. (32) into Eq. (13),

we get
dxc ¼
2brc drc

E0ð1�axtÞ2ð1�bxcÞ5

H � 5b2r2

E0ð1�axtÞ2ð1�bxcÞ6
ð33Þ
2.6. Constitutive relationships

The incremental form of the elastic damage constitutive equations (Al-Gadhib et al., 2000) can be ex-
pressed as
dei ¼ Cij drj þ rm
oCim

oxk
dxk ði; j; k;m ¼ 1; 2; 3Þ ð34Þ
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For uniaxial alternating tension–compression, differentiating Cij in Eq. (20a) with respect to xk and

substituting the results along with Eqs. (20b) and (27) into Eq. (34), one obtains
det ¼
1

E0ð1� axtÞ2ð1� bxcÞ4

"
þ 4a2r2

t =E
2
0ð1� axtÞ6ð1� bxcÞ8

H � 3a2r2
t =E0ð1� axtÞ4ð1� bxcÞ4

#
drt ð35Þ
As the incremental constitutive equation for tensile stage, where det ¼ the increment of tensile strain; rt and

drt are tensile stress and its increment, respectively.

In the same way, differentiating Cij in Eq. (20a) with respect to xk and substituting the results along with

Eqs. (20b) and (33) into Eq. (34), one obtains
dec ¼ � 1

E0ð1� axtÞ2ð1� bxcÞ4

"
þ 8b2r2

c=E
2
0ð1� axtÞ4ð1� bxcÞ10

H � 5b2r2
c=E0ð1� axtÞ2ð1� bxcÞ6

#
drc ð36Þ
As the incremental constitutive equation for compressive stage, where dec ¼ the increment of compressive

strain; rc and drc are the compressive stress and its increment, respectively.
3. Experimental program

3.1. Materials and specimens

Commercially available Portland cement was used. Crushed natural stones were used as coarse aggregate

with maximum particle size of 20 mm. River sand was used as the fine aggregates. The concrete mixture

proportions by weight are cement:water:coarse aggregate:fine aggregate¼ 1.0:0.5:5.5:3.5.
Fig. 2. Test specimen.
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A detailed diagram for dog-bone specimens used in this paper with 350 mm long, 100 mm wide, and 100

mm thick is given in Fig. 2. The specimens are cast in wood molds. The molds are removed after 24 h from

casting and the specimens are placed in a curing room at a relative humidity of 95% and at a temperature

of 20 �C for 4 weeks. The 28-day compressive strength of concrete obtained by testing standard cube
specimens (150 mm · 150 mm · 150 mm) is 31.48 MPa. Then, the specimens are dried in air for 8 weeks

before testing.

3.2. Testing system and loading conditions

The experimental set-up is shown in Fig. 3. Un-spaced spherical hinges are used between actuator and

loading plate to ensure the continuity and stability of the stress loaded on the specimen. A steel ring with

holes was mounted on each end of the specimen by the bottleneck for setting sensors. Two linear variable
Fig. 3. Experimental set-up.
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differential transducers (LVDT) on both sides of the specimen are used for measuring the deformation.

Preloading should be done before test. For tensile fatigue test, the clamping of specimen is conducted with

deformation controlled by the displacement of the actuator after placing the specimen between the loading

plates, and the specimen is preloaded repeatedly with the maximum stress reaching to 20% of the com-
pressive strength of concrete during per preloading. When the number of preloading is reached, the

tightness between specimen and both up and lower loading plates is adjusted by screwing the nuts on the

screws to keep the strain difference of the two LVDTs less than 10 microstrains to ensure axial loading.

Then each screw is added an additional nut to make the specimen and plates fixed. The preload of the

specimen is reduced to zero by adjusting the position of actuator after finishing the above procedure, and

the axial tensile fatigue loading can be conducted subsequently. For tension–compression fatigue test, two

blocks of elastic rubber shims with 5 mm thick are placed between both ends of specimen and plates

separately, and other procedures are the same with tensile loading.
A total of 76 specimens are tested in this paper. Both tensile repeated loading and reversible loading are

studied. For fatigue tests, one-stage constant amplitude fatigue loading is applied. The tests are carried out

in load control using a sinusoidal waveform with the frequency of 5–15 Hz. The adopted combinations of

maximum stress levels (denoted as Smax), minimum stress levels (Smin, which is the ratio of minimum stress

to tensile strength for tensile loading, or the ratio of compressive stress to compressive strength for stress

reversal), loading frequencies (f ) are listed in Table 1. All tests are performed in an MTS-810 closed-loop

testing machine, with capacity of 100 kN.
3.3. Results for static tests

To estimate the static strength of the specimens for the constant amplitude tests, six direct tensile tests

and three compressive tests are performed for the dog-bone specimens in each batch of the concrete. The
average tensile strength (ft) is 1.74 MPa and the ultimate strain is 0.01%. The average compressive strength

is 20.47 MPa and the ultimate strain is 0.23%. The Young�s modulus is 23.4 GPa, which is determined as

the secant modulus at 0:4ft and Poisson�s ratio is 0.17.
Table 1

Loading conditions

Loading forms Smin Smax f (Hz) Number of specimens

Tension 0.15 0.85 5 5

0.75 15 5

0.7 15 5

0.65 15 2

Tension–compression 0.1 0.85 5 3

0.75 5 3

0.65 5 4

0.6 5 3

0.55 5 2

0.2 0.85 5 3

0.75 5 4

0.65 5 4

0.55 5 4

0.5 5 2
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3.4. Results for S–N curves

Results of the tension and tension–compression fatigue tests are shown in Table 2. These scattered re-

sults are statistically analyzed to obtain S–N curves. In the curves the logarithm of the number of cycles to
failure (N ) is plotted against the maximum stress level (S). The S–N curves are shown in Fig. 4 for repeat

tensile tests and Fig. 5 for stress reversals. The lines drawn in the diagrams are the results of a multiple

linear regression analysis. These results indicate that the S–N curves of concrete subjected to repeat loads

exhibit no fatigue limit less than 2 million cycles. Also, it is decided to consider the maximum number of

cycles of the run-outs as the number of cycles to failure.

The relationship between stress levels and average fatigue life can then be written as
Table

Experi

Loa

Ten

Ten

aNo
lgN ¼ 16:67� 16:76
rmax

ft
þ 5:17

rmin

ft

rmin

ft

�
¼ 0–0:3

�
for direct tension ð37aÞ
lgN ¼ 12:02� 10:64
rmax

ft
� 4:39

rmin

fc

rmin

fc

�
¼ 0:1–0:2

�
for tension–compression ð37bÞ
where rmax is the maximum stress; rmin is the minimum stress; N is the number of cycles to failure; ft and fc
are the tensile and compressive strengths of concrete, respectively.

The correlation coefficients (c2) for Eqs. (37a) and (37b) are 0.964 and 0.943, respectively. The fatigue

strength ratio for 2 million cycles corresponding to the minimum stress levels (Smin) of 0.15 is predicted as

0.67 by Eq. (37a), and those corresponding to the minimum stress levels of 0.1 and 0.2 are predicted as 0.5
and 0.46 by Eq. (37b), respectively.

For tensile fatigue tests, Tepfers (1979) obtained a fatigue strength of 63.3% for 2 million cycles under

P ¼ 0:2 (P is a ratio of minimum stress to maximum stress) in splitting tension to concrete cubes. Cor-

nelissen and Reinhardt (1984) obtained a fatigue strength of about 62% for 2 million cycles under P ¼ 0:2 in
uniaxial tension. It should be noted that the minimum stress level of 0.2 is, in a certain degree, the stress

ratio of 0.18–0.23 for the maximum stress level from 0.85 to 0.65 in this paper, so the test results got in the
2

mental results for concrete under fatigue loading

ding forms Smin Smax Number of cycles to failure

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

sion 0.15 0.85 199 357 633 854 2512

0.75 1778 16,817 22,140 25,119 32,613

0.7 136,524 210,146 498,701 565,668 1,258,926

0.6 2.5 · 106a 2.5 · 106a

sion–compression 0.1 0.85 122 209 513

0.75 3236 8750 13,804

0.65 9120 36,308 42,658 107,152

0.6 26,303 94,624 171,791

0.55 2.5 · 106a 2.5 · 106a

0.2 0.85 79 178 196

0.75 398 1702 3981 5623

0.65 2673 8810 18,323 57,544

0.55 27,416 45,186 95,499 88,5116

0.5 2.5 · 106a 2.5 · 106a

t failed.
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Fig. 5. Tension–compression S–N curves for different Smin: (a) R ¼ 0:1 and (b) R ¼ 0:2.
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paper is comparable with those by Tepfers (1979) and Cornelissen and Reinhardt (1984). Fig. 6 shows the
comparison of Eq. (37a) with the test data in the available publications as follows:

(a) Tepfers (1979) tested 150 · 150 · 150 mm prisms using concrete compression strengths of 40.8 and 56.7

MPa. Three stress ratios (P ¼ 0:2, 0.3, and 0.4) were applied with the frequency of 5 or 10 Hz. The test

results under the stress ratio of P ¼ 0:2 are used in the paper.

(b) Cornelissen and Reinhardt (1984) tested 120 · 300 mm diameter cylinders using a cube compression

strength of 47.34 MPa. The minimum stress level was under 0.1 with one frequency (6 Hz).

It is certified from these fatigue experimental results that the fatigue strength of concrete under direct

tensile loading obtained in this study is correct.
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For alternate tension–compression fatigue tests, Cornelissen and Reinhardt (1984) obtained a fatigue
strength of about 35.3% and 32.1% for 2 million cycles for Smin ¼ 0:1 and 0.2, respectively. Comparison is

made with the direct tension–compression tests in the paper. Two minimum stress levels (Smin ¼ 0:1, 0.2) are
presented in Fig. 7. It is found that the fatigue strength of concrete under tension–compression loading

obtained in this study is somewhat higher than that obtained by Cornelissen and Reinhardt (1984), but they

have the same trend.
3.5. Results for cyclic strains

The typical stress–strain curves under alternating tensile-compressive stress are presented in Figs. 10(a)

and 11(a). It can be seen that the stress–strain relationships in uniaxial tension are almost linear during

most of the fatigue life in the loading stages and hysteresis phenomenon is apparent especially in
approaching failure. The stress–strain curve appears the rough–fine–rough feature with the increase of

strain. Similar features have been reported in literatures Saito and Imai (1983), and Cornelissen and

Reinhardt (1984).
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The stress–strain curves in the tensile stages of tension–compression loading are the same as those in

tension, whereas the hysteresis phenomenon is not obvious as the smaller compressive stress is used.
4. Verification

4.1. Calibration of model parameters

The material parameters of the proposed model are obtained from the monotonic and tension–com-
pression fatigue loading tests. The Young�s modulus was evaluated E ¼ 23:4 GPa, Poisson�s ratio m ¼ 0:17.
The parameter a is used for modifying the damage induced by direct tension, and b controlling the damage

growth rate and influencing the pre-peak behavior. In the proposed model, (a; b) are assigned (0:5; 0:05)
and (0:25; 0:1) at the stages of tension and compression test, respectively, the parameter D ¼ 2:65 as Suaris

et al. (1990) controlling the softening phase of concrete response in stress–strain space, and the parameters

Rt ¼ 5:5� 10�5 MPa and Rc ¼ 2:1� 10�3 MPa denoting the magnitudes of energy release rates when the

loading surface f ¼ 0 reaches the corresponding bounding surface F ¼ 0.

For monotonic loading, the threshold of damage is identified by the initial damage surface f0 ¼ 0 with
size R0. However, for cyclic loading R0 is hypothesized changing with each successive cycle and denoted as

R0 ¼ R0ð�xÞ, where �x ¼ ðxixiÞ2 is the magnitude of the damage vector xi. The function of R0ð�xÞ is found to

be an elliptical form for cyclic loading (Al-Gadhib et al., 2000). The form of the surface in R0–�x space may

be expressed as
ðR0 � Ri
0Þ

2

ðRb
0 � Ri

0Þ
2
þ ð�x� �xbÞ2

ð�xi � �xbÞ2
¼ 1 ð38Þ
where Ri
0 and �xi correspond to the initial size of the limit fracture surface and the associated damage,

respectively, and Rb
0 and �xb the bound surface and associated damage, respectively. The limit fracture

surface may reach its bounding surface while the loading surface f ¼ 0 may still be remote from its own
conjugate bounding surface F ¼ 0. Consequently, further damage is deemed to occur at a fixed size of limit

fracture surface (Rb
0) until damage reaches its limiting value xm and the loading surface f ¼ 0 reaches the

bounding surface F ¼ 0, defining incipient failure.
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For tensile loading, the initial damage xi is set to 0.05 and �xi will be equal to 0.05, too. The bounding

damage �xb is set to 0.5. For compressive loading, the initial damage xi is set to 0.05 and �xi will be equal to

0.07. The bounding damage �xb is set to 0.71. Substitution of �xi and �xb into Eq. (38) yields the evolution

relationship between R0 and �x.
4.2. Comparison with experimental data

The theoretical model in this paper is coded into a computer program to simulate the response under

alternate tension–compression fatigue loading. The analytical predictions for the damage accumulation

under cyclic loading are shown in Fig. 8 for three stress ratios (Smax ¼ 0:9, 0.8, 0.7), whereas the variations
of damage modulus H ¼ ok

o�x with damage evolution are shown in Fig. 9. With the experimentally determined

parameters, the theoretical stress–strain relationships of concrete under different stress levels are obtained.

Theoretical and experimental cyclic stress–strain curves are compared in Figs. 10 and 11 respectively. Fig.
10 corresponds to minimum stress level of Smin ¼ 0:1. With the same stress level and cycles, strains from the

theoretical calculation show relatively smaller than that from test in the stage of tension, however, they are

close in the stage of compression. The reason may be that the plastic strain is generated during the fatigue

loading and only elastic damage is considered in the constitutive law, so the model may not predict the

behavior very well. Fig. 11 corresponds to the minimum stress level of Smin ¼ 0:2. Fig. 12 shows the

computed fatigue lives for different stress levels, compared to the experimentally determined fatigue lives.

Although most of the fatigue lives obtained by the theory match the experimental results very well, the lives

obtained from the analytical method are somewhat smaller than the values of experimental linear regres-
sion.
5. Conclusions

A constitutive relationship for predicting the behavior of concrete subjected to uniaxial alternate ten-

sion–compression fatigue loading is developed based on the continuum damage mechanics. The tension and

compression bounding surfaces are employed in the formulation of the theoretical model, and the damage

evolution law has been derived. Experimental evidence indicates good agreement between theoretical model

and the experimental stress strain relationships. It is therefore possible to apply the constitutive relationship
developed in this paper for the prediction of the stress strain response subjected to stress reversal.
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